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Parametric excitation is a common phenomenon in science and engineering [1–4], and its study
is mathematically related to second order periodic ordinary differential equations of the following
form [5]:

aðtÞ .xðtÞ þ bðtÞ ’xðtÞ þ cðtÞxðtÞ ¼ 0; ð1Þ

where the coefficients aðtÞ; bðtÞ and cðtÞ vary periodically with time. For stochastic systems the
coefficients are random processes with assumed correlation function and probability distribution
[6–8]; in this article the examples used are largely confined to the deterministic case. For a single-
degree-of-freedom (s.d.o.f.) oscillator these coefficients are the mass, stiffness and damping
parameters.
This note points out that the standard definition of parametric excitation, given in most

vibration texts, may have inadvertently created a little confusion since the periodic variation of all
parameters of a mechanical system does not necessarily lead to parametric excitation. In
particular, it is emphasized that physical concepts have to be applied to justify mathematical
calculations for periodic variation of damping, since it does not lead to parametric excitation.
The application of parametric excitation to physical problem is a classical one and goes back to

Faraday and Rayleigh. It is known that Faraday (ca.,1831) was the first to demonstrate the effect
of parametric excitation so that it is by no means a recent idea. Rayleigh [9] was the first to study a
systematic mathematical analysis and provide a theoretical basis for these observations. Recent
studies in engineering mechanics have used parametric excitation to model variety of physical
processes such as vortex-induced vibration [10], motion of electrically conducting structural
member in magnetic field [11], air-inflated cylindrical membrane [12] inducement of chaotic
motion under parametric excitation [13], etc.
For mechanical vibration problems, Eq. (1) can be simply extended to a s.d.o.f. oscillator,

where the mass ðmÞ; damping ðcÞ and stiffness ðkÞ are assumed to be time-dependent periodic
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functions as follows:

mðtÞ .xðtÞ þ cðtÞ ’xðtÞ þ kðtÞxðtÞ ¼ F ðtÞ: ð2Þ

In general, for a mechanical system, parametric excitation refers to amplification of oscillation
due to the time-dependent variation of parameters such as inertia and/or stiffness [2–4,14]. When
the variation is periodic in stiffness—which is most often the case—it is widely represented by the
Mathieu equation [3], for which there are zones of linear instability defined by system parameters
and frequencies.
In existing vibration and structural dynamics literature the definition of parametric excitation

appears in different forms relating it to the s.d.o.f. oscillator (Eq. (2)). Some authors prefer to
define it as an excitation due to ‘‘the periodic variation of mass, stiffness and damping’’ [1,7].
Some others prefer to define it as one due to ‘‘periodic variation of stiffness’’ [14–18] and others as
‘‘periodic variation of stiffness and mass’’ [19]. Still, others define it, more generally, as a vibration
with time periodic changes in one or more parameters of the system [2,20,21].
The extension to include periodic variation of damping—beyond stiffness and inertia—in the

definition is sometimes done [1,7]. This note addresses the appropriateness of that extension from
a physical point of view. It is argued that parametric excitation is only possible when an energy-
storing parameter like inertia and/or stiffness (and not damping) changes periodically.
As mentioned before parametric excitation is well known in a particular form, when the

stiffness varies periodically, at twice the natural frequency (over its own natural frequency). This
is known as the Mathieu equation and is given by

.x þ o2
0ð1þ h cos 2otÞx ¼ 0: ð3Þ

For h ¼ 0; the solution x ¼ x0 cosðot þ yÞ is periodic. When ha0; the solution of the Mathieu
equation is of the following form (in mathematics this is termed the Floquet solution):

x ¼ emtPðtÞ; ð4Þ

where PðtÞ is a periodic function, and m is a constant parameter. The stability of solution xðtÞ is
dictated by the sign of m: If m ¼ 0; then the solution is periodic, mo0 the solution is damped and
finally for m > 0 the solution is exponentially rising confined to some instability zones.
The excitation case when there is periodic variation in damping is given by

.x þ ðgþ h cos 2otÞ ’x þ o2
0x ¼ 0: ð5Þ

The steady solution can be obtained by the method of harmonic balance by assuming the
solution to be x ¼ emt cosðot þ yÞ; where o is around o0; i.e. o0Eo: On substituting the assumed
solution in Eq. (5) and on neglecting the terms cosð3otyÞ and sinð3otyÞ (which can be shown to
have negligible effects) the following is obtained:

ðo2
0 � o2 þ m2 þ gmÞemt cosðot þ yÞ � ð2omþ goÞemt sinðot þ yÞ

þ
oh

2
emt sinðot � yÞ þ

mh

2
emt cosðot � yÞ ¼ 0 ð6Þ

or

½ðA þ DÞ cos y� ðB þ CÞ sin y�emt sinot þ ½ðB � CÞ cos y� ðA � DÞ sin y�emt cosot ¼ 0; ð7Þ

where A ¼ o2
0 � o2 þ m2 þ gm;B ¼ 2omþ go;C ¼ oh=2;D ¼ mh=2:
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Equating coefficients of emt sinot and emt cosot in Eqs. (6) and (7), the following equations are
obtained:

½ðA þ DÞ cos y� ðB þ CÞ sin y� ¼ 0; ðB � CÞ cos y� ðA � DÞ sin y ¼ 0: ð8a;bÞ

Eqs. (8a) and (8b) have solution if the determinant of their coefficients is zero, i.e.

ðo2
0 � o2 þ m2 þ gmÞ2 þ ð2omþ goÞ2 � ðoh=2Þ2 � ðmh=2Þ2 ¼ 0: ð9Þ

From Eq. (9), the condition for marginal stability ðm ¼ 0Þ is obtained as

ðo2
0 � o2Þ2 þ ðgoÞ2 �

oh

2

� �2

¼ 0: ð10Þ

Now, the condition for exact resonance ðo ¼ o0Þ will be considered which will suffice for the
present discussion. For o ¼ o0; the above relation reduces to h ¼ 2g and, so for parametric
instability (exponentially rising solution) the condition is h > 2g: Mathematically, a condition is at
hand and a physical interpretation is needed.
The condition h > 2g indicates that the net damping variation over a portion of the cycle must

be negative (shaded area of Fig. 1). This means that the periodic variation is not necessary for
linear instability but the creation of a negative damping condition [22,23] is a must. However, such
a negative damping condition can be created by constant energy input proportional to velocity as
follows (b is positive):

.xðtÞ þ g ’xðtÞ þ o2
0xðtÞ ¼ �b ’xðtÞ: ð11Þ

When b > g; an exponentially instability will occur and the right-hand side represents a non-
periodic source of energy.
A physical problem that exemplifies Eq. (11) is the single-degree torsional flutter, where energy

input occurs from non-periodic flow through the aerodynamic function b [24,25] resulting in
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self-excited oscillatory instability. On the other hand, by definition the energy input in a parametric
excitation system has to be periodic (or stochastic but not uniform). This distinction has to be
emphasized since the physical mechanisms for the two excitations are totally different [26,27].
Now the instability condition for Eq. (5) has to be compared to parametric excitation due to

periodic variation of stiffness. For this the Mathieu equation with constant damping g is considered:

.x þ g ’x þ o2
0x þ ðH cos 2otÞx ¼ 0: ð12Þ

At exact resonance o ¼ o0; the condition for instability can be obtained as before and is given by
H > 2g: The condition H > 2g does not imply that the net positive stiffness needs to be negative to
produce instability. Physically, what happens in this case is that over the cycle, energy is fed by
stiffness variation that negates the positive damping effect.
The distinction between the mechanism of periodic variation of stiffness and damping can also

be observed on basis of energy input into the oscillator. For this consider a general s.d.o.f.
oscillator whose damping and stiffness have a periodic variation:

.xðtÞ þ ½gþ pðtÞ� ’xðtÞ þ ½o2
0 þ qðtÞ�xðtÞ ¼ 0; ð13Þ

where pðtÞ and qðtÞ are periodic functions.
On multiplying Eq. (13) by ’xðtÞ;

.xðtÞ ’xðtÞ þ ½gþ pðtÞ� ’xðtÞ ’xðtÞ þ ½o2
0 þ qðtÞ�xðtÞ ’xðtÞ ¼ 0;

or

d

dt
f ’x2g þ o2

0

d

dt
fx2g þ ½gþ pðtÞ� ’xðtÞ ’xðtÞ þ qðtÞxðtÞ ’xðtÞ ¼ 0;

or

d

dt
fEg ¼ �½gþ pðtÞ� ’x2ðtÞ � qðtÞxðtÞ ’xðtÞ;

where E ¼ x2 þ o2
0x

2 is the energy of the oscillator. On integrating the above equation over one
cycle,

%E ¼
Z T

0

dE ¼ �
Z T

0

f½gþ pðtÞ� ’x2ðtÞ þ qðtÞxðtÞ ’xðtÞg dt;

where %E is the average energy input into the oscillator over one cycle and when %E is greater
than zero, parametric instability is initiated. Thus the instability conditions in the two cases
are as follows:

1. For the stiffness variation only ðpðtÞ ¼ 0Þ;

%E ¼ �
Z T

0

fg ’x2 þ qðtÞxðtÞ ’xðtÞg dt > 0;

and there is no direct relation between g and qðtÞ that can make %E positive.
2. For damping variation only ðqðtÞ ¼ 0Þ;

%E ¼ �
Z T

0

f½gþ pðtÞ� ’x2ðtÞg dt > 0:
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For %E to be positive over a cycle the amplitude of pðtÞ must be absolutely greater than the
mechanical damping g ( ’x2 is always positive), i.e. a negative damping condition has to be created.
In conclusion, the periodic variation of damping can change the manner of dissipation but the

system will still be dissipative. The important point is that a periodic damping variation cannot
cause ‘‘negative damping’’ i.e. supply energy as in the periodic variation of stiffness or inertia.
Finally, it is the writer’s belief that from a pedagogical point of view it is important not only to
exclude periodic damping variation in the definition of parametric excitation but also to explicitly
mention that this condition does not lead to parametric excitation.
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